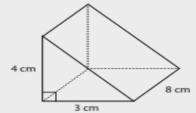

Mathematics Grade 9

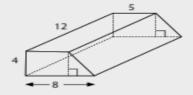
Volume of a triangular prism

Volume of triangular prism of Length L

- = Area of cross section x Length
- = $(\frac{1}{2} \times \text{base } \times \text{height of triangle}) \times \text{Length}$
- $= (\frac{1}{2} \times b \times h) \times L$



Note: The cross section is a right–angled triangle.

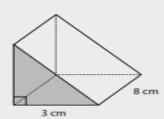

Example 1

Calculate the volume of the prism given below.

(a)

(b)

Solution (a)


Volume of prism

$$= \frac{1}{2} \times b \times h \times L$$

$$= \frac{1}{2} \times 3 \times 4 \times 8$$

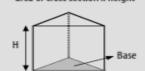
$$= 48 \text{ cm}^{3}$$

4 cm

Solution (b)

Area of trapezium

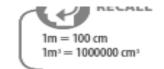
=
$$\frac{1}{2}$$
 (sum of parallel sides) x height
= $\frac{1}{2}$ (5 + 8) x 4 5
= $\frac{1}{2}$ x 13 x 4 12 12 13 x 2
= 26 cm²


Volume of prism = area of trapezium x length

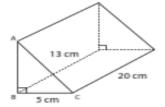
$$= 26 \times 12$$

= 312 cm³

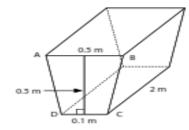
Note: Generally, the base of a prism can also be considered as its cross section and height, H. So we can write

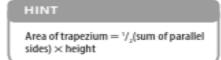

Volume of prism

= area of cross section x height



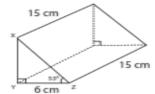
Workout Exercise: 1,2,5,6,7





- A right prism has a square base of side 5 cm and a height of 12 cm.
 Calculate its volume.
- The diagram shows a right prism whose cross section is a right-angled triangle ABC where angle B = 90°, BC = 5 cm and AC = 13 cm.
 - (a) Find the length of AB.
 - (b) Find area of triangle ABC.
 - (c) Given that the length of prism is 20 cm, calculate its volume.

The diagram shows a container with uniform cross section in the form of a trapezium ABCD.
 AB is parallel to DC and dimensions shown are in metres. Given that its length is 2 m, calculate its volume in (a) m³ (b) cm³.



- A swimming pool in the form of a prism is 24 m long, 15 m wide, 1 m deep at the shallow end and 8 m at the deep end. PQRS is in form of a trapezium with PQ parallel to SR.
 - (a) Calculate the length of PS.
 - (b) Calculate the volume of the pool.

 The diagram shows a right prism with a triangular cross-section XYZ with angle XYZ = 90°, angle XZY = 53° and YZ = 6 m.

[Given $\sin 53^\circ = 0.8$, $\cos 53^\circ = 0.6$, $\tan 53^\circ = 1.3$]

- (a) Calculate the length of XY.
- (b) Given that the length of the prism is 15 m, calculate its volume.